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Arrowsmith and Essam gave an expansion formula for point-to-point connec-
tedness functions of the mixed site-bond percolation model on oriented lattices,
in which each term is characterized by a graph. We extend this formula to
general k-point correlation functions, which are point-to-set (with k points)
connectivities in the context of percolation, of the two-neighbor discrete-time
Markov process (stochastic cellular automata with two parameters) in one
dimension called the Domany�Kinzel model, which includes the mixed site-
bond oriented percolation model on a square lattice as a special case. Our proof
of the formula is elementary and based on induction with respect to time-step,
which is different from the original graph-theoretical one given by Arrowsmith
and Essam. We introduce a system of m interacting random walkers called m
friendly walkers (m FW) with two parameters. Following the argument of
Cardy and Colaiori, it is shown that our formula is useful to derive a theorem
that the correlation functions of the Domany�Kinzel model are obtained as an
m � 0 limit of the generating functions of the m FW.

KEY WORDS: Arrowsmith�Essam formula; Domany�Kinzel model; oriented
percolation; friendly walkers.

1. INTRODUCTION AND MAIN RESULT

In this paper we consider the following two-neighbor discrete-time Markov
process !A

n with time n starting from A/2Z on the collection of finite sub-
sets of integers Z with the following evolution:

747

0022-4715�00�1100-0747�18.00�0 � 2000 Plenum Publishing Corporation

1 Department of Applied Mathematics, Faculty of Engineering, Yokohama National Univer-
sity, Tokiwadai, Hodogaya, Yokohama 240, Japan. Tel and Fax: +81-45-339-4205; e-mail:
norio�mathlab.sci.ynu.ac.jp

2 Department of Physics, Faculty of Science and Engineering, Chuo University, Kasuga,
Bunkyo-ku, 112-8551 Tokyo, Japan; e-mail: katori�phys.chuo-u.ac.jp

3 To whom correspondence should be addressed.



File: 822J 749902 . By:XX . Date:25:09:00 . Time:13:43 LOP8M. V8.B. Page 01:01
Codes: 2673 Signs: 2007 . Length: 44 pic 2 pts, 186 mm

(i) given !A
n , the events [x # !A

n+1] are independent, and

(ii) P(x # !A
n+1 | !A

n )= f ( |!A
n & [x&1, x+1] | ), where

f (0)=0, f (1)= p, and f (2)=q

with p, q # [0, 1], P(B | C ) is the conditional probability of an event B
given an event C, and |A| is the cardinality (the number of elements) of a
set A. Figure 1 illustrates the local rule of the model. This process can be
represented by a random configuration on a spatio-temporal plane V=
[v=(x, n) # Z_Z+ : x+n=even], where Z+=[0, 1, 2,...]. In V we use a
norm |v|=|x|+|n|. This class of stochastic cellular automata was first
studied by Domany and Kinzel, (1) and we call this the Domany�Kinzel
model in the present paper.

The oriented site percolation (q= p) and oriented bond percolation
(q=2p& p2) are special cases. The mixed site-bond oriented percolation
with the probabilities of an open site : and of an open bond ; corresponds
to the case of p=:; and q=:(2;&;2). See Section 5 in Durrett(2) for details.

In the case of the mixed site-bond percolation with parameters : and ;,
Arrowsmith and Essam(3) proved a formula which is given as a special case
with k=1 (i.e., for a pair connectedness function) of (1.5) below. In the
present paper, we extend this Arrowsmith�Essam formula to the general
case of the Domany�Kinzel model for any k-point correlation functions
(Theorem 1). Our method to prove the theorem is elementary and based
on induction with respect to time-step n. It is different from the original
one given by Arrowsmith and Essam which is based mainly on graph
theoretical argument.(3)

To state our results, we need to introduce some definitions and nota-
tions. For any m # [0, 1,...], we introduce a level m as Vm=[v=(x, n) # V :
n=m]. Then V=��

m=0 Vm .
From now on, we consider only the case of the process !0

n starting from
the origin [0]. A realization of !0

} can be represented by a configuration

Fig. 1. The local stochastic rule of time-evolution of the Domany�Kinzel model. The full
(resp. open) circle denotes the site included (resp. not included) in !A

} .
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' # [0, 1]T, where T=[v=(x, n) # V : |x|�n]=[(0, 0), (&1, 1), (1, 1),
(&2, 2), (0, 2), (2, 2),...]. Therefore, !0

m=[x1 , x2 ,..., xk] is equivalent to
'(x1 , m)='(x2 , m)= } } } ='(xk , m)=1 and '( y, m)=0 for y{xi (1�i�k),
where '(x, n)='((x, n)).

For each n�1, define

Pn(x1 , x2 ,..., xk)=P('(x1 , n)='(x2 , n)= } } } ='(xk , n)=1) (1.1)

where x1<x2< } } } <xk . We call this probability the k-point correlation
function of the Domany�Kinzel model. For example, consider the case
n=2, x1=&2 and x2=0 as shown in Fig. 2a. There are two disjoint
events A and B, which are subsets of [0, 1]T, given in Fig. 2b, contributing
to P2(&2, 0). Since P(A)= p_(1& p)_p_p= p3(1& p) and P(B)= p_
p_p_q= p3q, we have

P2(&2, 0)=P(A)+P(B)=(1+q) p3& p4

For a pair of sites (vi , vi+1) # Vm_Vm+1 , m�0, we put a bond, which
is an oriented arc from vi to vi+1 , if and only if |vi+1&vi |=2. A sequence
of successive bonds [(v0 , v1), (v1 , v2),..., (vn&1 , vn)] with vm # Vm , 0�m�n,
is called a path from v0 to vn and is denoted by ?(v0 , vn). Let O be the
origin and A=[(x1 , n), (x2 , n),..., (xk , n)]/Vn with x1<x2< } } } <xk ,
where n�1 and n+1�k�1 are assumed. Consider a collection of r(�k)
distinct paths [?1(O, v1), ?2(O, v2),..., ?r(O, vr)] such that [v1 , v2 ,..., vr]=A.
We regard each path ?i (O, vi ) as a set of bonds and take a union of all
paths in this collection,

g= .
r

i=1

?i (O, vi )

which is a graph on T. We simply call such a graph, which is constructed
by the above mentioned procedure, a graph connecting O and A made of
r paths and define G (r)

n (x1 , x2 ,..., xk) be the set of all graphs connecting O
and [(x1 , n), (x2 , n),..., (xk , n)] made of r paths. Then we define

Gn(x1 , x2 ,..., xk)= .
r�k

G (r)
n (x1 , x2 ,..., xk)

whose elements are simply called graphs connecting O and [(x1 , n),
(x2 , n),..., (xk , n)]. For example, Fig. 3a shows three graphs, g1 , g2 and g3 ,
included in G2(&2, 0). We also show the graphs, g4 , g5 , g6 , in Fig. 3b
which are not included in G2(&2, 0). For any g # Gn(x1 , x2 ,..., xk), let l(g)
and b(g) denote the number of loops and bonds in g, respectively. The
values of l(g) and b(g) are listed in Fig. 3a for G2(&2, 0).
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Fig. 2. (a) A figure for P2(&2, 0). (b) Two events A and B which contribute to P2(&2, 0).
The full (resp. open) circle denotes the site (x, n) at which 'i (x, n)=1 (resp. 0). Configura-
tions on the sites shown by dots are not fixed.
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Fig. 3. (a) Three distinct graphs, g1 , g2 and g3 , in G2(&2, 0). The quantities l(gi ), b(gi )
denote the number of loops and bonds in gi # G2(&2, 0). (b) The graphs, g4 , g5 and g6 ,
are not included in G2(&2, 0) by the following reasons. g4 : the site (x, n)=(&2, 2) is not
connected to the origin O. g5 : the site (2, 2) is connected to O. g6 : a path from O to (1, 1)
is terminated at (1, 1) and does not reach any site at the level n=2.

If p=0, then Pn(x1 , x2 ,..., xk)=0 for any n�1 and any (xi , n) # Vn

(1�i�k) with x1<x2< } } } <xk , so this case is trivial. Therefore, from
now on, we assume p>0. The following is our main theorem.

Theorem 1. In the Domany�Kinzel model with p # (0, 1] and
q # [0, 1], we have

Pn(x1 , x2 ,..., xk)= :
g # Gn(x1 , x2 ,..., xk)

\q&2p
p2 +

l(g)

pb(g) (1.2)

where n # [1, 2,...] and (xi , n) # Vn(1�i�k) with x1<x2< } } } <xk .
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As shown in Fig. 3, G2(&2, 0) has three elements, g1 , g2 , and g3 , and
we see l(g1)=l(g2)=0, l(g3)=1 and b(g1)=3, b(g2)=4, b(g3)=5. Then
the right-hand side (RHS) of (1.2) gives

:
g # G2(&2, 0)

\q&2p
p2 +

l(g)

pb(g)= p3+ p4+\q&2p
p2 + p5=(1+q) p3& p4

Compared with the direct calculation given above Theorem 1, it is con-
cluded that

P2(&2, 0)= :
g # G2(&2, 0)

\q&2p
p2 +

l(g)

pb(g)

i.e., Theorem 1 holds in this example.
Here we give some expressions of (1.2) in special cases.

(i) oriented bond percolation (q= p(2& p)):

Pn(x1 , x2 ,..., xk)= :
g # Gn(x1 , x2 ,..., xk)

(&1)l(g) pb(g) (1.3)

(ii) oriented site percolation (q= p):

Pn(x1 , x2 ,..., xk)= :
g # Gn(x1 , x2 ,..., xk)

(&1)l(g) ps(g)&1 (1.4)

where s(g) is the number of sites in g. In (1.4), we used Euler's law: s(g)=
b(g)&l(g)+1.

(iii) oriented site-bond percolation ( p=:; and q=:(2;&;2)):

Pn(x1 , x2 ,..., xk)= :
g # Gn(x1 , x2 ,..., xk)

\&
1
:+

l(g)

(:;)b(g)

= :
g # Gn(x1 , x2 ,..., xk)

(&1)l(g) :s(g)&1;b(g) (1.5)

where we also used Euler's law. It should be remarked that in the context
of percolation problems the k-point correlation functions defined by (1.1)
can be regarded as the point-to-set connectivities, where the set includes k
distinct points. The pair connectedness function is a special case with k=1
(i.e., a point-to-point connectivity).

Remark. Arrowsmith and Essam studied an inhomogeneous site-
bond percolation model on an oriented graph G.(3) Let V and A are respec-
tively the site and bond sets of G and consider the case that each site w # V
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(resp. each bond a # A) is open with probability pw (resp. pa) and is closed
with probability 1& pw (resp. 1& pa) independently. They studied the coef-
ficients [d9 ], which are called directed d-weights, in the expansion of the
pair connectedness function Puv between two sites u, v # G in the form

Puv(G)= :
A$�A

d9 (G$) `
a # A$

pa `
w # V$

pw (1.6)

where G$ is the bond set A$ with its set of incident sites V$. (See Eq. (2.2)
and remarks for oriented graphs below it in ref. 3.) In their paper, (3) they
first claimed that d9 (G$)=0 if G$ is not coverable by paths from u to v and
then proved that, if d9 (G$){0, then

d9 (G$)=(&1)tuv(G$)+1 (1.7)

with

tuv(G$)=|A$|&|V$|+2 (1.8)

(See Theorem 4 and Lemma 5 in ref. 3.) If we consider a homogeneous site-
bond percolation model on an oriented square lattice T with u=(0, 0) and
v=(x1 , n), in which pw=: for any site w{u and pu=1, and pa=; for any
bond a in T, then we can identify the results (1.6)�(1.8) by Arrowsmith and
Essam with the special case with k=1 of our formula (1.5), since in this
case d9 (G$){0 iff G$ # Gn(x1) by our definition of Gn(x1) and the fact that
tuv(G$)+1=b(G$)&s(G$)+3=b(G$)&s(G$)+1(mod 2)=l(G$)(mod 2),
where we have used Euler's law at the last equality.

In the next section, we will give a proof of Theorem 1. Our proof is
given by induction with respect to the level n. Moreover, in a case (see case
(ii) in Section 2), we will perform induction on the size of a cluster k at a
fixed level.

The formulae (1.3)�(1.5) can be called low-density expansion formulae,
since the RHS's are power series with respect to the concentration of site
and�or that of bond. Such low-density expansion formulae have been used
for calculating series-expansions for connectedness functions for percola-
tion models.(4, 5) It should be noted that recently Jensen introduced a new
algorithm to calculate long series for oriented percolation models, in which
he used the Arrowsmith�Essam formula.(6, 7) He reported that the growth
of computational complexity of this new algorithm is exponential but its
growth factor is much smaller than that of the previous best algorithm and
the series for the bond (site) percolation on the oriented square lattice was
extended to order 171 (158). Such a long series has not yet been calculated
for general cases of the Domany�Kinzel model. One of the applications of
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Theorem 1 is to use it as a graphical expansion formula to calculate
correlation functions Pn(x1 , x2 ,..., xk) as a power series with respect to p
and #=(q&2p)�p2 for the Domany�Kinzel model. Another application of
Theorem 1 is to use it to prove a theorem (Theorem 5), which shows that
the correlation functions of the Domany�Kinzel model are obtained as an
m � 0 limit of the generating functions of the system of m interacting ran-
dom walkers called m friendly walkers (FW).(8, 9) Definitions of the system
of FW with two parameters and the relation of it to the Domany�Kinzel
model will be given in Section 3. Some comments on the present results are
given in Section 4.

2. PROOF OF THEOREM 1

This section is devoted to a proof of Theorem 1. The basic idea is to
use the induction with respect to the level n. First the collection of all sets
included in Vn , which is denoted by Un , is divided into the following three
disjoint collections: Un=U (1)

n _ U (2)
n _ U (3)

n :

(i) U (1)
n =[[(x1 , n), (x2 , n),..., (xk , n)] # Un : xi+1&x i�4 (i=1,...,

k&1)],

(ii) U (2)
n =[[(x1 , n), (x2 , n),..., (xk , n)] # Un : xi+1&x i=2 (i=1,...,

k&1)],

(iii) U (3)
n =Un"(U (1)

n _ U (2)
n ).

First we prove Theorem 1 in case (i), [(x1 , n),..., (xk , n)] # U (1)
n . Com-

pared with case (ii), case (i) is easier to prove. Next we will consider case
(ii). Since the proof of case (iii), [(x1 , n),..., (xk , n)] # U (3)

n , is the combina-
tion of the proofs of cases (i) and (ii), we can omit to show it here.

2.1. Case (i)

We assume that the formula (1.2) holds at a certain level n and then
we will prove that it holds also at the level n+1. We start by demonstrat-
ing a simple and typical example.

Example 1. We assume that n�3. Let k=2 and take x1=&2,
x2=2 at the level n+1. As shown in Fig. 4a, we let y1=&3, y2=&1,
y3=1, y4=3 on the level n. We begin with the left-hand side (LHS) of
(1.2).
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LHS of (1.2) with a level n+1

=Pn+1(x1 , x2)

=q2Pn( y1 , y2 , y3 , y4)

+qp[Pn( y1 , y2 , y3)&Pn( y1 , y2 , y3 , y4)]

+qp[Pn( y1 , y2 , y4)&Pn( y1 , y2 , y3 , y4)]

+ pq[Pn( y1 , y3 , y4)&Pn( y1 , y2 , y3 , y4)]

+ pq[Pn( y2 , y3 , y4)&Pn( y1 , y2 , y3 , y4)]

+ p2[Pn( y1 , y3)&Pn( y1 , y2 , y3)

&Pn( y1 , y3 , y4)+Pn( y1 , y2 , y3 , y4)]

+ p2[Pn( y1 , y4)&Pn( y1 , y2 , y4)

&Pn( y1 , y3 , y4)+Pn( y1 , y2 , y3 , y4)]

+ p2[Pn( y2 , y3)&Pn( y1 , y2 , y3)

&Pn( y2 , y3 , y4)+Pn( y1 , y2 , y3 , y4)]

+ p2[Pn( y2 , y4)&Pn( y1 , y2 , y4)

&Pn( y2 , y3 , y4)+Pn( y1 , y2 , y3 , y4)]

=(q&2p)2 Pn( y1 , y2 , y3 , y4)

+ p(q&2p)[Pn( y1 , y2 , y3)+Pn( y1 , y2 , y4)

+Pn( y1 , y3 , y4)+Pn( y2 , y3 , y4)]

+ p2[Pn( y1 , y3)+Pn( y1 , y4)+Pn( y2 , y3)+Pn( y2 , y4)]

In the second equality, we have used an inclusion-exclusion argument: For
example,

P('( y1 , n)='( y3 , n)=1, '( y2 , n)='( y4 , n)=0)

=Pn( y1 , y3)&Pn( y1 , y2 , y3)&Pn( y1 , y3 , y4)

+Pn( y1 , y2 , y3 , y4)

Next we consider the RHS of (1.2). Let #=(q&2p)�p2. By definition of the
set of graphs Gn(x1 , x2 ,..., xk),

:
g # Gn+1(x1 , x2)

#l(g)pb(g)= :
A/[ y1 , y2 , y3 , y4], A{<

c(A) :
g$ # Gn(A)

#l(g$)pb(g$)
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where the coefficients c(A) are the functions of # and p. For example, let
A=[ y1 , y2 , y3]. As shown in Fig. 4b, g$ is a graph connecting the origin
and [( y1 , n), ( y2 , n), ( y3 , n)]. In order to make a graph g # Gn+1(x1 , x2)
by adding bonds to g$, we have to link ( y1 , n) to (x1 , n+1), ( y2 , n) to
(x1 , n+1), and ( y3 , n) to (x2 , n+1) by bonds as shown in Fig. 4c. (If we
do not link ( y2 , n) to (x1 , n+1), for example, then the path from the
origin to ( y2 , n) is terminated there, i.e., the site ( y2 , n) is dangling, and the
obtained graph is not included in Gn+1(x1 , x2).) These three new bonds
give a factor p3 and a vertex y1x1 y2 indicates creation of a new loop in g,
which gives a factor #1. Then we have c( y1 , y2 , y3)=#1p3. Following the
same kind of consideration for each A/[ y1 , y2 , y3 , y4], A{<, we have

RHS of (1.2) with a level n+1

=#2p4 :
g # Gn( y1 , y2 , y3 , y4)

#l(g)pb(g)

+#1p3 { :
g # Gn( y1 , y2 , y3)

#l(g)pb(g)+ :
g # Gn( y1 , y2 , y4)

#l(g)pb(g)

+ :
g # Gn( y1 , y3 , y4)

#l(g)pb(g)+ :
g # Gn( y2 , y3 , y4)

#l(g)pb(g)=
+#0p2 { :

g # Gn( y1 , y3)

#l(g)pb(g)+ :
g # Gn( y1 , y4)

#l(g)pb(g)

+ :
g # Gn( y2 , y3)

#l(g)pb(g)+ :
g # Gn( y2 , y4)

#l(g)pb(g)=
=(q&2p)2 Pn( y1 , y2 , y3 , y4)

+ p(q&2p)[Pn( y1 , y2 , y3)+Pn( y1 , y2 , y4)

+Pn( y1 , y3 , y4)+Pn( y2 , y3 , y4)]

+ p2[Pn( y1 , y3)+Pn( y1 , y4)+Pn( y2 , y3)+Pn( y2 , y4)]

The second equality comes from the assumption of induction. We can find
that any coefficients of Pn(A) with A/[ y1 , y2 , y3 , y4] and A{< in the
LHS are equal to the corresponding coefficients in the RHS and we can say
that Theorem 1 holds in Example 1.

For any [(x1 , n), (x2 , n),..., (xk , n)] # U (1)
n , define zi=xi&1, zi*=

xi+1. In the above example, x1=&2, x2=2, z1=&3= y1 , z1*=&1= y2 ,
z2=1= y3 , z2*=3= y4 . By the definitions of zi and zi* , we see that zi*&zi

=2 for any i # [1, 2,..., k]. If we assume the formula (1.2) at a level n, then
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Fig. 4. Figures for Example 1. In (b) and (c), g$ denote a graph in Gn( y1 , y2 , y3). Remark
that all sites ( yi , n), i=1, 2, 3, are connected to the origin O, but the site ( y4 , n) is not
connected to O in g$ by definition of Gn( y1 , y2 , y3).

both sides of this formula at a level n+1 can be expanded and expressed
by linear combinations of Pn(A) with A/[z1 , z1* ,..., zk , zk*], A{<, as we
have found in Example 1. Then what we have to do is to check that any
coefficients of Pn(A) in the expansion of the LHS of (1.2) at a level n+1
is equal to the corresponding coefficient in the expansion of the RHS of it.
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Fig. 5. A figure for Pn(z1 , z1* ,..., zl , zl*, zl+1 ,..., zk), where zi=xi&1 for 1�i�k and
zi*=xi+1 for 1�i�l. It is straightforward to prove the equality for all other coefficients by
the same kind of argument. Therefore the proof in the case (i) is completed.

Here we show how to prove the equality using the coefficient of the follow-
ing type of Pn(A) (see Fig. 5):

Pn(z1 , z1* , z2 , z2* ,..., zl , zl*, zl+1, zl+2,..., zk)

In the LHS of (1.2) with a level n+1, we can calculate the coefficient of
this type of Pn(A) as

:
l

m=0
\ l

m+ (&1)m 2mpm+k&lql&m= pk&l (q&2p) l (2.1)

On the other hand, in order to make a graph in Gn+1(x1 , x2 ,..., xk) from a
graph g$ # Gn(z1 , z1* ,..., zl , zl*, zl+1 , zl+2 ,..., zk), we have to link (zi , n) to
(xi , n+1), 1�\i�k, and (zi* , n) to (xi , n+1), 1�\i�l, by bonds. By
this addition of bonds, the number of loops should increase by l and the
number of bonds by 2l+(k&l ). Then we have

coefficient of Pn(z1 , z1* ,..., zl , zl*, zl+1 , zl+2 ,..., zk)

in the RHS of (1.2) at a level n+1

=\q&2p
p2 +

l

p2l+(k&l )

=(q&2p) l pk&l (2.2)

Then the equality of the coefficients of Pn(z1 , z1* ,..., zl , zl* , zl+1 , zl+2 ,..., zk)
in the expansions at the level n+1 is concluded if we assume (1.2) at a
level n.

2.2. Case (ii)

Before proving Theorem 1 in the case (ii) in general, we give a next
simple example for better understanding of our proof.
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Fig. 6. A figure for Example 2.

Example 2. We assume that n�2. Let k=2, x1=&1, x2=1 at a
level n+1 and y1=&2, y2=0, y3=2 at a level n as shown in Fig. 6. First
we consider the LHS of (1.2).

LHS of (1.2) with a level n+1

=Pn+1(x1 , x2)

=q2Pn( y1 , y2 , y3)+ pq[Pn( y1 , y2)&Pn( y1 , y2 , y3)]

+ pq[Pn( y2 , y3)&Pn( y1 , y2 , y3)]+ p2[Pn( y1 , y3)&Pn( y1 , y2 , y3)]

+ p2[Pn( y2)&Pn( y1 , y2)&Pn( y2 , y3)+Pn( y1 , y2 , y3)]

=q(q&2p) Pn( y1 , y2 , y3)+ p(q& p)[Pn( y1 , y2)+Pn( y2 , y3)]

+ p2[Pn( y1 , y3)+Pn( y2)]

where we have used again an inclusion-exclusion argument in the second
equality. Next we consider the RHS of (1.2). Let #=(q&2p)�p2.

RHS of (1.2) with a level n+1

=(#2p4+#1p3+#1p3) :
g # Gn( y1 , y2 , y3)

#l(g)pb(g)

+(#1p3+#0p2) :
g # Gn( y1 , y2)

#l(g)pb(g)

+(#1p3+#0p2) :
g # Gn( y2 , y3)

#l(g)pb(g)

+#0p2 :
g # Gn( y1 , y3)

#l(g)pb(g)+#0p2 :
g # Gn( y2)

#l(g)pb(g)

=(#2p4+#1p3+#1p3) Pn( y1 , y2 , y3)+(#1p3+#0p2) Pn( y1 , y2)

+(#1p3+#0p2) Pn( y2 , y3)+#0p2Pn( y1 , y3)+#0p2Pn( y2)

=q(q&2p) Pn( y1 , y2 , y3)+ p(q& p) Pn( y1 , y2)+ p(q& p) Pn( y2 , y3)

+ p2Pn( y1 , y3)+ p2Pn( y2)
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The assumption of induction gives the second equality. So we have shown
the validity of Theorem 1 also in this example.

In general, for [(x1 , n),..., (xk , n)] # U (2)
n both sides of formula (1.2) at

a level n+1 can be expanded and expressed by linear combinations of
Pn(A) with A/[ y1 , y2 ,..., yk+1], A{<, where y1=x1&1, y2=x2&1,...,
yk=xk&1, and yk+1=xk+1, if we assume the formula (1.2) at a level n.
We have to check that any coefficients of Pn(A) in the expansion of the
LHS of (1.2) at a level n+1 is equal to the corresponding coefficient in the
expansion of the RHS of it.

Let us first explain in detail how to prove the equality of the coef-
ficients of Pn( y1 , y2 ,..., yk+1), which corresponds to the coefficient of
Pn( y1 , y2 , y3) in Example 2. Then we give a general proof to the equality
of the coefficients of Pn(A) with A/[ y1 , y2 ,..., yk+1].

Now we introduce the following subset of 0�1 sequences with length
k # [1, 2,...].

S (k)=[s=(s(1), s(2),..., s(k)) # [0, 1]k : s(i)=s(i+1)=1,

or s(i){s(i+1) for any i # [1, 2,..., k&1]] (2.3)

For example, s=(1, 0, 1, 1) # S (4), but s=(0, 0, 1, 1) � S (4), since 0, 0-
sequence is forbidden. For any s # S (k), let

>(m)=>(m : s)=|[i # [1, 2,..., k] : s(i)=m] |

>(m1m2)=>(m1 m2 : s)=|[i # [1, 2,..., k&1] : s(i)=m1 , s(i+1)=m2]|

where m, m1 , m2 # [0, 1]. Furthermore we define

Xk= :
s # S (k)

(&1)>(0) p>(10)+>(01)q>(11)

X v
k= :

s # S (k) : s(1)=1

(&1)>(0) p>(10)+>(01)q>(11)

X b
k= :

s # S (k) : s(1)=0

(&1)>(0) p>(10)+>(01)q>(11)

X v�v
k = :

s # S (k) : s(1)=s(k)=1

(&1)>(0) p>(10)+>(01)q>(11) (2.4)

X v�b
k = :

s # S (k) : s(1)=1, s(k)=0

(&1)>(0) p>(10)+>(01)q>(11)

X b �v
k = :

s # S (k) : s(1)=0, s(k)=1

(&1)>(0) p>(10)+>(01)q>(11)

X b �b
k = :

s # S (k) : s(1)=s(k)=0

(&1)>(0) p>(10)+>(01)q>(11)
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and

Wk= :
s # S (2k)

p>(1)#(>(1)&>(0))�2

W v
k= :

s # S (2k) : s(1)=1

p>(1)#(>(1)&>(0))�2

W b
k= :

x # S (2k) : s(1)=0

p>(1)#(>(1)&>(0))�2 (2.5)

W v�v
k = :

s # S (2k) : s(1)=s(2k)=1

p>(1)#(>(1)&>(0))�2

W v�b
k = :

s # S (2k) : s(1)=1, s(2k)=0

p>(1)# (>(1)&>(0))�2

where #=(q&2p)�p2. We should remark that the above definitions give

Xk=X v
k+X b

k , X v
k=X v�v

k +X v�b
k , X b

k=X b�v
k +X b �b

k
(2.6)

Wk=W v
k+W b

k , W v
k=W v�v

k +W v�b
k

We will use the following lemma.

Lemma 2.

X v
k+1=qX v

k+ pX b
k , X b

k+1=&pX v
k (2.7)

where X v
1=1 and X b

1=&1, and

W v
k+1=(q& p) W v

k+(q&2p) W b
k

(2.8)
W b

k+1=pW v
k+ pW b

k

where W v
1=q& p and W b

1= p.
The proof of Lemma 2 immediately follows the definitions of X v

k , X b
k ,

Wv
k , and W b

k .
First we state that the coefficient of Pn( y1 ,..., yk+1) in the expansion

of the LHS of (1.2) with a level n+1 is equal to Xk+1 . This fact can be
confirmed if we notice the following. Each s # S (k+1) in Xk+1 represents a
site configuration at a level n, in which if s(i)=1, '( yi , n)=1, and if
s(i)=0, '( yi , n)=0 for 1�i�k+1. As shown in Fig. 7a, each (1, 0) or
(0, 1) pair gives a factor p and each (1, 1) pair q, since '(xi , n+1)=1,
1�\i�k, by definition of Pn(x1 , x2 ,..., xk). By the inclusion�exclusion
argument, factor &1 should be multiplied for each yi with s(i)=0. Then
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Fig. 7. (a) A site configuration given by a sequence s=(0, 1, 1, 0, 1,..., 1, 1) # S (k). If s(i)=1
(resp. 0), a full (open) circle is put on the site ( yi , n). If s(i)=1 (resp. s(i)=0), '( yi , n)=1
(resp. 0). (b) A bond configuration given by a sequence s=(1, 0, 1, 0, 1, 1, 0, 1,..., 1, 1) # S (2k),
in which each 1 represents a bond connecting a corresponding pair of sites. Here g$ denote
a graph in Gn( y1 , y2 ,..., yk), then remark that all sites ( yi , n), 1�i�k+1, are connected to
the origin in a graph g$.

762 Konno and Katori



the contribution from such a site configuration to the coefficient of
Pn( y1 ,..., yk+1) is given by (&1)>(0) p>(10)+>(01)q>(11) and Xk+1 gives the
summation of all those contributions.

Next we state that the coefficient of Pn( y1 ,..., yk+1) in the expansion
of the RHS of (1.2) with a level n+1 is equal to W v�v

k . In order to confirm
this, we first recognize that each s # S (2k) in W v�v

k represents now a bond
configuration between the levels n and n+1. As shown in Fig. 7b, the
leftmost and the rightmost pairs of sites are linked by bonds (corre-
sponding to the condition s(1)=s(2k)=1 in the summation of W v�v

k ). If
s(2i)=1, 1�i�k, then ( yi+1 , n) and (xi , n+1) are connected by a bond,
and if s(2i+1)=1, 0�i�k&1, then ( yi+1 , n) and (xi+1 , n+1) are
connected by a bond. Each bond gives a factor p and a vertex yi xiyi+1

gives a factor #. Then it is easy to see that the contribution from such
a bond configuration to the coefficient of Pn( y1 ,..., yk+1) is given by
p>(1)#(>(1)&>(0))�2 and W v�v

k gives the summation of all those contributions.
Then what we have to do is to prove the identity

Xk+1=W v�v
k (2.9)

for any k # [1, 2,...].
We prove (2.9) by induction with respect to k in the following way.

First we consider the case k=1. In this case, we have

X2= :
s # [(0, 1), (1, 0), (1, 1)]

(&1)>(0) p>(10)+>(01)q>(11)

=(&1)1 p1q0+(&1)1 p1q0+(&1)0 p0q1

=&2p+q

On the other hand,

W v�v
1 = :

s # [(1, 1)]

p>(1)#(>(1)&>(0))�2= p2 \q&2p
p2 +

(2&0)�2

=q&2p

Therefore we have X2=W v�v
1 . That is, (2.9) holds for k=1.

Next we suppose (2.9) to be true for k=m;

Xm+1=W v�v
m (2.10)

Under this assumption, we will prove the case k=m+1, i.e., Xm+2=
Wv�v

m+1 . By (2.6) and (2.7), we see that
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Xm+2=X v
m+2+X b

m+2

=qX v
m+1+ pX b

m+1& pX v
m+1

=(q& p) Xm+1+(2p&q) X b
m+1

On the other hand, the definition of W v�v
m+1 gives

W v�v
m+1=p2 \q&2p

p2 +
1

W v�v
m + p \q&2p

p2 +
0

W v�v
m + p2 \q&2p

p2 +
1

W v�b
m

=(q& p) W v�v
m +(q&2p) W v�b

m

Therefore we have

Xm+2=(q& p) Xm+1+(2p&q) X b
m+1 (2.11)

W v�v
m+1=(q& p) W v�v

m +(q&2p) W v�b
m (2.12)

When q=2p, combining (2.10), (2.11) with (2.12) gives the desired conclu-
sion immediately;

Xm+2=W v�v
m+1

So, from now on, we assume q{2p. By (2.10), (2.11) and (2.12), it suffices
to show that

X b
m+1=&W v�b

m (2.13)

The definition of W v�b
m gives

W v�b
m = pW v

m&1 (2.14)

Therefore, from the second equation of (2.7), (2.14) and p>0, we see that
(2.13) can be rewritten as

X v
m=W v

m&1 (2.15)

To prove (2.15), we need the following corollary of Lemma 2. Let a and b
be roots of x2&qx+ p2=0. Note that q{2p gives a{b.

Corollary 3.

X v
k=

1
a&b

[(ak&bk)& p(ak&1&bk&1)]

(2.16)

X b
k=

p
a&b

[&(ak&1&bk&1)+ p(ak&2&bk&2)]
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where X v
1=1 and X b

1=&1, and

W v
k=

1
a&b

[(ak+1&bk+1)& p(ak&bk)]

(2.17)

W b
k=

p
a&b

(ak&bk)

where W v
1=q& p and W b

1= p.
The proof of Corollary 3 is given by a standard argument as follows.

For X v
k and X b

k , (2.7) gives

\X v
k+1

X b
k+1+=\ q

& p
p
0+\

X v
k

X b
k +

=\ a
& p

b
& p+\

a
0

0
b+\

a
& p

b
& p+

&1

\X v
k

X b
k+ (2.18)

We should remark that a and b are eigenvalues of ( q
& p

p
0). Then (2.18)

gives (2.16). Similarly, for W v
k and W b

k (2.8) gives

\W v
k+1

W b
k+1+=\q& p

p
q&2p

p +\W v
k

W b
k +

=\p&a
& p

p&b
& p +\

a
0

0
b+\

p&a
& p

p&b
& p +

&1

\W v
k

W b
k+ (2.19)

Note that a and b are also eigenvalues of ( q& p
p

q&2p
p ). So (2.17) follows

(2.19).
The desired result (2.15) immediately follows (2.16) and (2.17) in the

above corollary. Then we have proved the equality of the coefficients of
Pn( y1 , y2 ,..., yk+1).

Now we give proofs of equalities for other coefficients Pn(A), A/
[ y1 , y2 ,..., yk+1], A{<, A{[ y1 , y2 ,..., yk+1]. We start with an example
with k=7 and A=[ y1 , y2 , y3 , y5 , y6 , y7], that is, y4 � A, y8 � A, as
shown in Fig. 8a. Let L and R be the coefficients of Pn(A) in the LHS and
RHS of (1.2) at a level n+1. For this example, we have

L= :
s # S (8) : s(4)=s(8)=0

(&1)>(0)&2 p>(10)+>(01)q>(11)

and

R= :
s # S (11) : s(1)=s(5)=s(6)=s(11)=1

p>(1)#>0(4)
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where

>0(4)=>0(4 : s)# |[i # [1, 2, 4, 5] : s(2i&1)=s(2i)=1]|

for s # S (11). As shown in Fig. 8b, each site configuration s # S (8) with
restriction s(4)=s(8)=0 in L can be divided into two subconfigurations
s1 # S (4) with s1(4)=0 and s2 # S (5) with s2(1)=s2(5)=0. That is,

L= :
s1 # S (4) : s1(4)=0

(&1)>(0)&1 p>(10)+>(01)q>(11)

_ :
s2 # S (5) : s2(1)=s2(5)=0

(&1)>(0)&2 p>(10)+>(01)q>(11)

= &X b
4_X b �b

5

On the other hand, Fig. 8c shows that each bond configuration s # S (11)

with restriction s(1)=s(5)=s(6)=s(11)=1 in R can be divided into two
subconfigurations s1 # S (5) with s1(1)=s1(5)=1 and s2 # S (6) with s2(1)=
s2(6)=1 and we have

R= :
s1 # S (5) : s1(1)=s1(5)=1

p>(1)#>1(4)_ :
s2 # S (6) : s2(1)=s2(6)=1

p>(1)#>2(4)

=p :
s1 # S (4) : s1(1)=1

p>(1)#(>(1)&>(0))�2_p2 :
s2 # S (4)

p>(1)#(>(1)&>(0))�2

=pW v
2_p2W2

where

>1(4)=>1(4 : s1)# |[i # [1, 2] : s(2i&1)=s(2i)=1]|

for s1 # S (5) and

>2(4)=>2(4 : s2)# |[i # [1, 2] : s(2i)=s(2i+1)=1]|

for s2 # S (6). Then if the equalities &X b
4= pW v

2 and X b �b
5 = p2W2 hold, then

L=R is concluded for this example.
The above calculation demonstrates the fact that (i) for any A/

[ y1 , y2 ,..., yk+1] each site and bond configurations in L and R, respec-
tively, can be divided into their subconfigurations so that L is represented
by products of &X b

k and X b�b
k and R by products of pW v

k and p2Wk and
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Fig. 8. Figures for the example A=[ y1 , y2 , y3 , y5 , y6 , y7]. (b) Each site configuration
s # S (8) in L is divided into two subconfigurations. Here sites denoted by open circles should
take the value 0 and those denoted by V take 0 or 1. Remark that 0, 0-sequence is forbidden.
(c) Each bond configuration s # S (11) in R is divided into two sub configurations. Here solid
lines should be occupied by bonds (s(i)=1) and broken lines are empty or occupied by bonds
(s(i)=0 or 1). Remark that 0, 0-sequence is forbidden.
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that (ii) L=R is concluded for any A/[ y1 , y2 ,..., yk+1], if the following
equalities are satisfied: for any k # [1, 2, 3,...],

(a) &X b
k+2=pW v

k

(b) X b�b
k+3=p2Wk

These equalities are proved as follows.

Proof of (a). This equality immediately follows Corollary 3.

Proof of (b). First remark that we have assumed that p>0. Defini-
tion (2.4) implies X b �b

k+2= p2X v�v
k . Then (b) is equivalent to

X v�v
k+1=Wk (2.20)

for any k # [1, 2, 3,...]. We prove (2.20) by induction with respect to k. It
is easy to see that X v�v

2 =q=W1 . Assume that (2.20) holds for k=m. Then
we consider the case with k=m+1. By definition (2.4), we see that

X v�v
m+2=qX v�v

m+1+ pX b �v
m+1 (2.21)

and

Wm+1=W v
m+1+W b

m+1

=(q& p) W v
m+(q&2p) W b

m+ pW v
m+ pW b

m

=qWm& pW b
m (2.22)

where we have used (2.8) of Lemma 2. Since we have assumed (2.20) for
k=m, what we have to prove is the equality

X b �v
m+1=&W b

m (2.23)

We have already obtained a solution of W b
m as the second equation of

(2.17) in Corollary 3. Following the calculation similar to that in the proof
of Corollary 3, we have

X b �v
m+1=X v�b

m+1=&
p

a&b
(am&bm)

if q{2p, where a and b are different roots of x2&qx+ p2=0. Then we can
conclude (2.23). When q=2p(>0), (2.21) and (2.22) are written as

Xv�v
m+2= pX v�v

m+1+ pX v
m+1 , Wm+1= pWm+ pW v

m
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respectively. By the assumption of induction and the equality Xv
m+1=W v

m ,
which was proved by Corollary 3, (2.20) with k=m+1 is obtained. Then
the proof of Theorem 1 in the case (ii) is completed.

Remark. The point of the proof in the case (ii) is to rewrite L (resp.
R) by a suitable product of Xk's (resp. Wk's). This decoupling property is
general, and from this point of view, the proof in the case (i) can be rewritten
as follows. Let (2.1) and (2.2) be L and R, respectively, then L= pk&lX l

2 and
R= pk&l (W v�v

1 ) l. We have shown X2=q&2p=W v�v
1 below (2.9).

The proofs of cases (i) and (ii) are summarized as follows. We prove
the equation (1.2) by induction with respect to the level n. We assume that
equality at a level n and prove it for a level n+1. In proving the equality,
we expand the LHS and RHS of the desired equation and show an equality
of coefficient of each term in the LHS and that of the corresponding term
in the RHS. We have proved the equalities by (a) first showing that coef-
ficients can be represented by products of the quantities Xk's, Wk's and
their appropriate modifications defined by (2.4) and (2.5), then (b) identify-
ing the desired equalities between coefficients with the equalities between
Xk's, Wk's and their modifications, and (c) proving the equalities between
Xk's, Wk's and their modifications by induction with respect to k.

The decoupling property that coefficients are represented by using
products of Xk's, Wk's and their modifications is general and reduction
from the equalities beteen the coefficients to those between Xk's, Wk's and
their modifications can be done for any case. Then we can say that it is
straightforward to give a proof of Theorem 1 in the case (iii) following the
above mentioned three steps as in the cases (i) and (ii). Then the proof of
Theorem 1 is completed.

3. APPLICATION OF THEOREM 1: FRIENDLY WALKERS

A system of m friendly walkers (m FW) is an ensemble of paths of m
random walkers, who prefer to walk together than walk alone and satisfy
the non-crossing condition.(8, 9) It can be regarded as interacting vicious
walkers(10�14) and will be used as a model system showing interfacial wet-
ting transitions in a two-dimensional (m+1)-phase systems.(15) It was first
introduced to describe allowed spin configurations of the (2m+1)-state
chiral Potts model(16, 17) for which a special boundary condition is imposed
so that the m � 0 limit of partition function is equal to the percolation
probability of the oriented bond percolation on the square lattice.(8) Since
the Domany�Kinzel model has two parameters p and q, here we introduce
the FW with two parameters. Theorem 1 is very useful to prove the
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theorem that the m � 0 limit of the generating functions of this generalized
FW gives the correlation functions Pn(x1 , x2 ,..., xk) of the Domany�Kinzel
model, if we follow the argument of Cardy and Colaiori.(9)

Let us consider an enumeration problem of weighted paths of m(�1)
walkers on Z with discrete time. At time n=0, all walkers are at the origin
and they move simultaneously in time. At each time step n � n+1, each
walker steps either to the right or left nearest-neighbor site with equal
probability. Two or more walkers can occupy the same site on Z and they
can walk together. We call a set of walkers which occupy the same site a
group. (When there is only one walker at a site, the group is a singleton.)
We label the m walkers by integers 1, 2,..., m and the location of the i th
walker at time t is written as zi (t). We impose the non-crossing condition,

z1(t)�z2(t)� } } } �zm(t) for any t�0

We introduce two parameters r and { with (r, {) # [0, 1]2 and the weights
of paths of m walkers are determined as follows.

(i) At each time 1�t�n, count st=the number of groups. Then we
multiply a weight rst.

(ii) At each time 1�t�n, count lt=the number of distinct sites at
which two different groups of walkers join together at that time, in which
the two groups were separated in a previous time. Then we multiply a
height {lt.

When two or more walkers walk together along the same path, st remains
small, but if they tend to walk separately, then st becomes large and the
weight rst becomes small, since 0�r�1. This implies that the walkers
prefer to walk together than walk alone. By this reason, those walkers are
called friendly walkers.(8) Figure 9a shows an example of paths of three
(m=3) FW up to n=12. We define the k-point generating function of the
m FW as a weighted sum of all allowed paths of m walkers up to time t=n
with a condition [z1(n), z2(n),..., zm(n)]=[x1 , x2 ,..., xk], where x1<x2<
} } } <xk . That is,

Zn(r, {; x1 , x2 ,..., xk ; m)= :
all paths

`
n

t=1

rst {lt (3.1)

It should be noted that the set of sites (x, n) on Z2, on which walkers
can pass makes T. A path of each walker is a sequence of successive bonds
(see Fig. 9a), and a union of paths gives a graph g (see Fig. 9b). That is,
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Fig. 9. (a) An example of paths of three (m=3) FW up to n=12. (b) In this case, a union
of paths of three walkers makes a graph g # G12(&2, 2). We can see that s(g)=20 and l(g)=3
(l3=l4=l8=1 and lt=0 for other t).

we consider a system of m walkers such that a union of paths makes a
graph g # Gn(x1 ,..., xk). By definition, s(g)=�n

t=1 st+1 and l(g)=�n
t=2 lt ,

where st and lt are powers of weights rst and {lt for the tth step of the FW.
For a given graph g # Gn(x1 ,..., xk), however, there may be many dif-

ferent realizations of walking of m FW, which make the same graph g. Let
c(g; m) be the number of the distinct paths of the m FW for a given graph
g # Gn(x1 , x2 ,..., xk). Then (3.1) is rewritten as

Zn(r, {; x1 , x2 ,..., xk ; m)= :
g # Gn(x1 , x2 ,..., xk)

c(g; m) rs(g)&1{l(g) (3.2)

So far we have assumed that m is an integer, but we can allow m be
any real number, since c(g; m) is a polynomial of m and the generating
functions of the m FW depend on m only through c(g; m). Recently Cardy
and Colaiori(9) proved the following useful lemma.
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Lemma 4 (Cardy and Colaiori(9)). For g # Gn(x1 , x2 ,..., xk),
define

c(g; 0)= lim
m � 0

c(g; m)

Then

c(g; 0)=(&1)k&1+l(g)

Combining Theorem 1, (3.2) and Lemma 4 gives the following
theorem for the Domany�Kinzel model, if Euler's law is used.

Theorem 5. Define

Zn(r, {; x1 , x2 ,..., xk ; 0)= lim
m � 0

Zn(r, {; x1 , x2 ,..., xk ; m)

then

Pn(x1 , x2 ,..., xk)=(&1)k&1 Zn \ p,
2p&q

p
; x1 , x2 ,..., xk ; 0+

By the definition of c(g; m), if m is fixed as a non-zero finite integer,
c(g; m)=0 for the graphs in Gn(x1 , x2 ,..., xk) which have m+1 or more
sites at a level Vs , 1�s�n. This means that Zn(r, {; x1 , x2 ,..., xk ; m) given
by (3.2) is obtained by a partial sum of the graphs g in Gn(x1 , x2 ,..., xk).

4. CONCLUDING REMARKS

Now we give some comments on out results. Kinzel studied the three-
neighbor model in one-dimension as well as the two-neighbor Domany�
Kinzel model, (18) which can be identified with the oriented percolation
model on the triangular lattice under some conditions. The same kind of
formula as (1.2) may be given also for the triangular lattice, in which the
weights of graphs should be determined not only by b(g) and l(g) but also
by the number of the sites at which three bonds merge into one. We will
be able to define the m FW, whose m � 0 limit gives the three-neighbor
model. The oriented percolation models and the Domany�Kinzel-type
stochastic cellular automata are well-defined in higher dimensions. The
generalization of formula (1.2) for the higher dimensional models will be
studied.
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In the present paper, we have considered only the process !0
n starting

from a singleton at the origin. When we consider processes !A
n starting from

other A/Z, we can define the following correlation functions in a
generalized form,

Pn(A, B)=P(!A
n #B) for A, B/Z

In the context of percolation problem, they are identified with set-to-set
connectivities.

Generalization of the formula (1.2) for such correlation functions is an
interesting future problem.
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